## Neoadjuvant therapy in NSCLC: Implications for surgical resection

Sabita Jiwnani Professor, Thoracic Surgery Tata Memorial Hospital

## Outline of today's talk

- Why neoadjuvant
- Evidence for neoadjuvant
- Morbidity after neoadjuvant and surgery
- Neoadjuvant in Stage III/ extended resections
- Is MIS feasible after neoadjuvant
- Neoadjuvant immunotherapy
- Pulmonary functions after neoadjuvant therapy
- TMH experience

## Neoadjuvant therapy in NSCLC

Neoadjuvant therapy is defined as any therapy delivered prior to definitive local therapy intended to increase the cure rate

- Proposed benefits:
  - downstaging
  - improving resection rate
  - treating subclinical micro-metastases
- Compliance with neoadjuvant shown to be better than adjuvant
- Biological effect of neoadjuvant can be analyzed in the resected tumor
- Adjuvant therapy can be tailored based on the response

## Systemic therapy in resectable NSCLC

- Locally advanced NSCLC develop early recurrences and distant metastases despite complete resection
- Earlier trials and meta-analysis showed benefit with adjuvant chemotherapy
- Tumors >4cm, high risk features and nodal positivity warrant systemic therapy
- Very few trials have compared Neoadjuvant chemotherapy (NACT) vs Adjuvant chemotherapy (Adj CT)

# Neoadjuvant chemotherapy: Efficacy and evidence

## Neoadjuvant chemotherapy

| Trial              | Size | Stage         | Histology<br>No. (%)                                        | Regimen                                  | ORR       | pCR   | Complete<br>Resection<br>Induction<br>Chemo vs.<br>Surgery<br>Alone | Median OS<br>Induction<br>Chemo vs.<br>Surgery Alone | Survival<br>Induction<br>Chemo vs.<br>Surgery Alone               |
|--------------------|------|---------------|-------------------------------------------------------------|------------------------------------------|-----------|-------|---------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| Roth<br>[10]       | 60   | IIIA          | AD: 30(50)<br>SCC: 22(37)<br>LCC: 6(10)                     | Cyclophosphami<br>Etoposide<br>Cisplatin | ie<br>35% | NR    | 39% vs. 31%                                                         | 64 months vs.<br>11 months *                         | OS at 36 months<br>56% vs. 15%                                    |
| Rosell<br>[11,12]  | 60   | IIIA          | AD: 14(23)<br>SCC: 42(70)<br>LCC: 4(7)                      | Mitomycin<br>Ifosfamide<br>Cisplatin     | 60%       | 4%    | 85%                                                                 | 22 months vs.<br>10 months <sup>†</sup>              | OS at 60 months<br>17% vs. 0%                                     |
| Depierre<br>[13]   | 355  | IB-IIIA       | AD<br>SCC                                                   | Mitomycin<br>Ifosfamide<br>Cisplatin     | 64%       | 11%   | 92% vs. 86%                                                         | 37 months vs.<br>26 months ‡                         | OS at 48 months<br>43.9% vs. 35.3%                                |
| Nagai<br>[14]      | 62   | IIIA          | AD: 41(66)<br>SCC: 15(24)<br>Others: 6(10)                  | Cisplatin<br>Vindesine                   | 28%       | 0%    | 65% vs. 77%                                                         | 17 months vs.<br>16 months <sup>§</sup>              | OS at 60 months<br>10% vs. 22%                                    |
| Gilligan<br>[15]   | 519  | IB-IIIA       | AD: 138(27)<br>SCC: 256(49)<br>Others: 125(24)              | Platinum-based                           | 49%       | 4%    | 82% vs. 80%                                                         | 54 months vs.<br>55 months **                        | OS at 36 months<br>44% vs. 45%                                    |
| Pisters<br>[16,17] | 354  | IB-IIIA       | AD: 107<br>SCC: 129<br>Others: 101                          | Paclitaxel<br>Carboplatin                | 41%       | NR    | 93% vs. 88%                                                         | 62 months vs.<br>41 months <sup>++</sup>             | OS at 60 months<br>50% vs. 41%                                    |
| Felip<br>[18]      | 413  | IB-IIIA       | AD: 128(31)<br>SCC: 212(52)<br>LCC: 42(10)<br>Others: 27(7) | Paclitaxel<br>Carboplatin                | 53.3%     | 10.5% | NR                                                                  | NR                                                   | OS at 60<br>months46.6% vs.<br>44%<br>II-T3N1: 41.3%<br>vs. 34.5% |
| Scagliotti<br>[19] | 270  | IB-IIIA       | AD: 85(31)<br>SCC: 111(31)<br>LCC: 13(1)<br>Others:59(22)   | Gemcitabine<br>Cisplatin                 | 35.4%     | NR    | 88% vs. 84%                                                         | 93 months vs.<br>57 months <sup>‡‡</sup>             | OS at 36 months<br>67.6% vs. 59.8%<br>SCC: 66.5% vs.<br>65.6%     |
| Mattson<br>[20]    | 274  | IIIA-<br>IIIB | AD: 54(20)<br>SCC: 170(62)<br>LCC: 20(7)<br>Others:30(11)   | Docetaxel                                | 28%       | NR    | 77% vs. 76%                                                         | 14.8 months vs.<br>12.6 months <sup>§§</sup>         | OS at 12 months<br>59.1% vs. 50.5%                                |

### Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data

NSCLC Meta-analysis Collaborative Group\*

- Published in 2014
- 15 RCTs, 2385 patients
- 13% reduction of RR for death,
- OS benefit-5% at 5 years
- No difference in 30- day mortality (OR 1·48, 95% CI 0·85–2·58, p=0·17)
- No difference in extent or completeness of resection

(OR 0.88, 95% CI 0.68-1.14, p=0.33)

• No difference across subgroups

|                                                                     | Preoperative<br>chemotherapy | Control*<br>/* | 0-E    | Variance |               | HR (95% CI); p value      |
|---------------------------------------------------------------------|------------------------------|----------------|--------|----------|---------------|---------------------------|
| France 1990                                                         | 8/13                         | 8/13           | 0.32   | 3.97     | ⊢ <b>-</b>    | <b>→</b>                  |
| MD Anderson 1994                                                    | 19/28                        | 27/32          | -6.40  | 11-19    |               |                           |
| Spain 1994                                                          | 19/29                        | 27/30          | -8.88  | 9.65     | ····          |                           |
| MIP-91                                                              | 137/179                      | 146/176        | -12.99 | 70-22    |               |                           |
| SWOG S9015                                                          | 3/5                          | 12/16          | -1.04  | 2.94     | ••••••        | <b>→</b>                  |
| JCOG 9209                                                           | 28/31                        | 25/31          | 2.25   | 12.97    |               | <b>→</b>                  |
| Netherlands 2000                                                    | 23/39                        | 15/40          | 3.86   | 9.36     |               | $\rightarrow$             |
| Finland 2003                                                        | 19/30                        | 19/32          | -0.50  | 9.48     |               | >                         |
| MRC BLT                                                             | 4/5                          | 3/5            | 1.26   | 1.60     | L             | $\rightarrow$             |
| MRC LU22                                                            | 151/258                      | 158/261        | -2.92  | 77-01    | ···           |                           |
| SWOG S9900                                                          | 93/180                       | 103/174        | -9.31  | 48.84    |               |                           |
| China 2002                                                          | 26/32                        | 18/23          | 1.42   | 10.78    | L             | <b>→</b>                  |
| China 2005                                                          | 8/19                         | 14/21          | -3-31  | 5.44     |               |                           |
| ChEST                                                               | 45/129                       | 61/141         | -10.27 | 26.39    |               |                           |
| NATCH                                                               | 99/201                       | 109/212        | -4.11  | 51-95    | ····          |                           |
| Total                                                               | 682/1178                     | 745/1207       | -50-62 | 351.78   | <b></b>       | 0·87 (0·78-0·96); p=0·007 |
| <b>Overall HR</b><br>0-87 (0-78-0-96). p=(<br>0-86 (0-75-0-98). p=( | 0.007 (fixed effect          | :)<br>.ctr)    |        |          | 0 0.5 1.0 1.5 | 2.0                       |
| Heterogeneity: y <sup>2</sup> =18                                   | -75, df=14, p=0-18           | 8, P=25%       |        |          | better better | ΥY                        |

Effectiveness of neoadjuvant chemotherapy on the survival outcome patients with resectable non-small-cell lung cancer: A meta-analysis randomized controlled trials

Yunfeng Zhang<sup>1</sup>, Xiayun Hu<sup>1</sup>, Dapeng Liu<sup>1</sup>, Rui Wang, Xin Sun, Ziyang Peng, Hong R Ning Du<sup>\*</sup>

Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China

Surgical Oncology 38 (2021) 101590

Contents lists available at ScienceDirect

Surgical Oncology

• 19 RCTs,4372 patients

Significant OS benefit
(HR: 0.87; 95%CI: 0.81–0.94; P < 0.001)</li>

- Higher benefit in Females and Stage III tumors
- No difference in post operative mortality or complications

(RR: 1.26; 95%CI: 0.82–1.92; P = 0.291)



Fig. 4. Effect of neoadjuvant chemotherapy vs. primary surgery on overall survival; HR: hazard ratio; CI: confidence interval.

## Neoadjuvant targeted therapy

| Trial             | Stage    | Size | Intervention<br>Used                        | ORR             | Complete<br>Resection | MPR         | pCR         | Survival                                                                                 |
|-------------------|----------|------|---------------------------------------------|-----------------|-----------------------|-------------|-------------|------------------------------------------------------------------------------------------|
| CTONG1103<br>[7]  | IIIA, N2 | 72   | Erlotinib vs.<br>Gemcitabine +<br>Cisplatin | 54.1% vs. 34.3% | 73% vs. 62.9%         | 9.7% vs. 0% | 0% vs. 0%   | mPFS: 21.5 months vs.<br>11.4 months<br>mOS: 45.8 months vs.<br>39.2 months *            |
| Zhang, Y.<br>[23] | II- IIIA | 33   | Gefitinib                                   | 54.5%           | NR                    | 24.2%       | NR          | mDFS: 33.5 months<br>OS at 48 months: 54.5%                                              |
| Xiong, L.<br>[24] | IIIA     | 19   | Erlotinib                                   | 42.1%           | 68.4%                 | NR          | NR          | mOS: 51.6 months                                                                         |
| Lv, C. [25]       | I–IIIA   | 134  | EGFR-TKI vs.<br>Pemetrexed +<br>Cisplatin   | 55.8% vs. 38.5% | 95.3% vs. 95.6%       | NR          | 0% vs. 2.2% | mDFS: 15.0 months vs.<br>14.1 months <sup>†</sup><br>OS at 36 months: 76.6%<br>vs. 66.8% |
| ASCENT<br>[26]    |          | 19   | Afatinib + CRT                              | 69%             | NR                    | 57.1%       | 14.3%       | OS at 24 months: 85%<br>mPFS: 34.6 months                                                |
| Bao, Y. [27]      | IB-IIIC  | 42   | EGFR-TKIs                                   | 47.6%           | NR                    | 23.8%       | NR          | mRFS: 19.8 months                                                                        |

Table 2. Phase II clinical trials of neoadjuvant-targeted therapy.

## Modest response and pCR rates, trend towards improved PFS

### Preoperative Chemotherapy Plus Surgery Versus Surgery Plus Adjuvant Chemotherapy Versus Surgery Alone in Early-Stage Non–Small-Cell Lung Cancer

Enriqueta Felip, Rafael Rosell, José Antonio Maestre, José Manuel Rodríguez-Paniagua, Teresa Morán, Julio Astudillo, Guillermo Alonso, José Manuel Borro, José Luis González-Larriba, Antonio Torres, Carlos Camps, Ricardo Guijarro, Dolores Isla, Rafael Aguiló, Vicente Alberola, José Padilla, Abel Sánchez-Palencia, José Javier Sánchez, Eduardo Hermosilla, and Bartomeu Massuti

- NATCH trial: NACT+Sx vs Sx alone vs Sx+ Adj CT
- N=624 (Stage IA to IIIA)
- Completion of all chemotherapy- 90.4% (NACT) vs 60.9% (Adj CT)
- Pneumonectomy rates were similar in all 3 arms
- Peri operative outcomes were also comparable
- 5 yr DFS: 38.3% (NACT) vs 36.1% (Adj CT)
- 5 yr OS: 46.6% (NACT) vs 45.5% (Adj CT)

### No difference whether chemo was given before or after surgery Criticism: Underpowered study

The Optimal Treatment for Stage IIIA-N2 Non-Small Cell Lung Cancer: A Network Meta-Analysis

Yi Zhao, MD, Wei Wang, MD, Hengrui Liang, MD, Chi-Fu Jeffrey Yang, MD, Thomas D'Amico, MD, Calvin S. H. Ng, MD, Chia-chuan Liu, MD, René Horsleben Petersen, MD, Gaetano Rocco, MD, Alessandro Brunelli, MD, Jun Liu, MD, Jiaxi He, MD, Weizhe Huang, MD, Wenhua Liang, MD, and Jianxing He, MD, on behalf of the AME Thoracic Surgery Collaborative Group

- 18 RCTs, 2158 patients with N2 positive status
- NACT f/b Sx+CT/RT had the highest OS benefit
- No treatment related deaths in the CSC and CSR arms

| Worst       Overall Survival (original network meta-analysis)         R       S       SR       C       R       SC       CS       CR       SC       C       R       SC       SC       R       SC       SC       R       SC       SC       SC       SC       SC       SC | Best |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| R S SR C R SC CS CRS SCR CR SC R C RS CSR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| R S SR C R SC CS CRS SCR CR SC R C RS CSR (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSC  |
| Worst Overall Survival (first-sensitivity analysis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |

Check for updates

C- Chemotherapy, S- Surgery ,R-Radiotherapy

## Surgery after Neoadjuvant therapy

- Difficulties encountered after neoadjuvant treatment:
   Tumor progression needing radical resection
   Presence of adhesions and fibrosis
   Tissue fragility and delayed healing
   What
- Patient factors:
  - Immune modulation and suppressionWorsening frailty
  - >Alteration of pulmonary function tests



#### Induction Chemotherapy Increases Perioperative Complications in Patients Undergoing Resection for Non–Small Cell Lung Cancer

John R. Roberts, MD, Chad Eustis, MD, Russell Devore, MD, David Carbone, MD, Hak Choy, MD, and David Johnson, MD

Department of Cardiac and Thoracic Surgery, Vanderbilt University Hospital, Nashville, Tennessee

- Surgery after NACT (n=34) compared with upfront resections (n=67)
- No treatment related mortality
- Majority were pneumonia with suboptimal; no response to antibiotics
- ? Immuno suppression



#### Morbidity and Mortality After Neoadjuvant Therapy for Lung Cancer: The Risks of Right Pneumonectomy

Jocelyne Martin, MD, Robert J. Ginsberg, MD, Amir Abolhoda, MD, Manjit S. Bains, MD, Robert J. Downey, MD, Robert J. Korst, MD, Tracey L. Weigel, MD, Mark G. Kris, MD, Ennapadam S. Venkatraman, PhD, and Valerie W. Rusch, MD

Thoracic Service, Department of Surgery, Thoracic Oncology Service, Department of Medicine, and Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York

- 2001, MSKCC experience
- N=470, (82% post NACT)
- Post op complication-38.1%
   (M/C-pneumonia/atelectasis)
- Significant predictors:

Right pneumonectomy, Blood loss and FEV1

 Mortality-3.8%, right pneumonectomy only predictor of mortality

#### Table 2. Resection Information (n = 470)

| Type of Resection                    | n (%)      |
|--------------------------------------|------------|
| Exploration only                     | 58 (12.3)  |
| Lesser resection (wedge/segment)     | 18 (3.8)   |
| Lobectomy                            | 297 (63.2) |
| Sleeve                               | 9          |
| Bilobectomy                          | 26         |
| Pneumonectomy                        | 97 (20.6)  |
| Standard                             | 55         |
| Extrapleural                         | 1          |
| Intrapericardial                     | 38         |
| Extrapleural and<br>intrapericardial | 2          |
| Completion                           | 1          |

### Major pulmonary resection after neoadjuvant chemotherapy or chemoradiation in potentially resectable stage III non-small cell lung carcinoma

Michael Peer 🖂, Sharbel Azzam, Arnold Cyjon, Rivka Katsnelson, Henri Hayat, Ilan Bar & Ofer Merimsky

- Stage IIIA/IIIB (n=124)
- 32% post NACT
- Mean hospital stay-12.6 days
- Complications-49.2%
   M/C-Atrial fibrillation and pneumonia
- Mortality- 6.5% (n=8)

| Pneumonectomy    | 61 (right=31, left=30)                    | 49.2(0.142) |
|------------------|-------------------------------------------|-------------|
| Intrapericardial | 7                                         | 5.6 (0.048) |
| Extrapleural     | 8                                         | 6.5 (0.242) |
| Completion       | 8                                         | 6.5 (0.999) |
| Bilobectomy      | 5 (RUL/RML = 1, RML/RLL = 4)              | 4.0(0.142)  |
| Lobectomy        | 58 (RUL = 32, LUL = 18, RLL = 6, LLL = 2) | 46.8(0.142) |

(Pneumonectomy-5, Bilobectomy-2, Lobectomy-1)

## Pneumonectomy is a valuable treatment option after neoadjuvant therapy for stage III non-small-cell lung cancer

Walter Weder, MD,<sup>a,\*</sup> Stéphane Collaud, MD,<sup>a,\*</sup> Wilfried E. E. Eberhardt, MD,<sup>b</sup> Sven Hillinger, MD,<sup>a</sup> Stefan Welter, MD,<sup>c</sup> Rolf Stahel, MD,<sup>d</sup> and Georgios Stamatis, MD<sup>c</sup>

- 176 pneumonectomies (20% NACT/80% NACTRT)
- 78% pneumonectomies were extended/adjacent organ resections
- Major complication-22% (M/C-Pneumonia)
- BPF-2.8%

No difference across subgroups (Type of NAT, side or sleeve resection)

• 90 day mortality-3%

Original Study

### Pneumonectomy in Stage IIIA-N2 NSCLC: Should It Be Considered After Neoadjuvant Chemotherapy?

Monica Casiraghi <sup>1</sup> A ⊠, Juliana Guarize <sup>1</sup>, Alberto Sandri <sup>1</sup>, Patrick Maisonneuve <sup>2</sup>, Daniela Brambilla <sup>1</sup>, Rosalia Romano <sup>1</sup>, Domenico Galetta <sup>1</sup>, Francesco Petrella <sup>1</sup>, Roberto Gasparri <sup>1</sup>, Cesare Gridelli <sup>3</sup>, Filippo De Marinis <sup>4</sup>, Lorenzo Spaggiari <sup>1, 5</sup>

- 233 pneumonectomies (63.5% post Induction)
- Major complications-19.3%
- Post op BPF-8.2%

Pre op RT was the only significant factor predicting BPF

- Mortality-2.6%
- Complications and Mortality were not different between the two groups (Upfront vs Induction therapy)

# Is minimally invasive surgery feasible after pre-operative chemotherapy?

### Video-Assisted Thoracoscopic Lobectomy Is the Preferred Approach Following Induction Chemotherapy

Mohamed K. Kamel, Abu Nasar, Brendon M. Stiles, Nasser K. Altorki, and Jeffrey L. Port 🖂

Published Online: 1 May 2017 | https://doi.org/10.1089/lap.2016.0540

- 114 matched patients of VATS and open lobectomies
- Conversion-12.5% (M/C- adhesions)
- Major complication-7%
  (Not different between the 2 groups)
- 30 day mortality- nil
- Duration of surgery, blood loss, ICD days and hospital stay lesser in VATS arm.

Open Access Published: 19 March 2021

#### Video-assisted thoracoscopic lobectomy after neoadjuvant chemotherapy for non-small cell lung cancer: a multicenter propensity-matched study

Andrea Dell'Amore <sup>D</sup>, <u>Ivan Lomangino</u>, <u>Nicola Tamburini</u>, <u>Stefano Bongiolatti</u>, <u>Nicola Sergio Forti Parri</u>, <u>William Grossi</u>, <u>Chiara Catelli</u>, <u>Giulia Lorenzoni</u>, <u>Dario Gregori</u>, <u>Samuele Nicotra</u>, <u>Andrea Zuin</u>, <u>Angelo</u> <u>Morelli</u>, <u>Piergiorgio Solli</u>, <u>Luca Voltolini</u>, <u>Giorgio Cavallesco</u> & <u>Federico Rea</u>

- 62 VATS lobectomies with matched group of open lobectomies
- Conversion-8.6% (M/C- bleeding)
- Post operative complication-26%

Not different between open and VATS arm

Medical complications (AF, AKI, MI and embolism) significantly lesser in VATS arm

• Post operative mortality-1.3%

No difference between two groups

# Current perspective: The era of immunotherapy

### Initial results of pulmonary resection after neoadjuvant nivolumab in patients with resectable non-small cell lung cancer

Matthew J Bott <sup>1</sup>, Stephen C Yang <sup>2</sup>, Bernard J Park <sup>1</sup>, Prasad S Adusumilli <sup>1</sup>, Valerie W Rusch <sup>1</sup>, James M Isbell <sup>1</sup>, Robert J Downey <sup>1</sup>, Julie R Brahmer <sup>3</sup>, Richard Battafarano <sup>2</sup>, Errol Bush <sup>2</sup>, Jamie Chaft <sup>4</sup>, Patrick M Forde <sup>3</sup>, David R Jones <sup>1</sup>, Stephen R Broderick <sup>5</sup>

### Phase I trial of 22 patients

- 54% conversion due to hilar fibrosis or inflammation
- Major complications-25%, pneumonia-7%
- No post operative mortality

### Surgery after Immunotherapy

- Hilar fibrosis and inflammation
- Pneumonitis, thyroiditis and endocrinopathy
- Higher conversion rates

## Early neoadjuvant immune studies

| Table 1 Pulmonary resection after immunotneaux - perioperative safety and complications                                               |                                                                                     |    |    |         |         |          |        |                                                         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----|----|---------|---------|----------|--------|---------------------------------------------------------|--|--|--|
| Authors Year N, total* Minimally invasive Approach Operation Operative to open (%) time (mean) Complications Mortality at 30 days (%) |                                                                                     |    |    |         |         |          |        |                                                         |  |  |  |
| Chaft et al. (9)                                                                                                                      | 2017                                                                                | 5  | 2  | 1 (50%) | NR      | 1 (20%)  | 0 (0%) | Data interpreted from case vignettes                    |  |  |  |
| Bott <i>et al.</i> (10)                                                                                                               | 2018                                                                                | 22 | 15 | 1 (25%) | 168 min | 7 (32%)  | 0 (0%) | 11 (50%) underwent non-anatomic<br>wedge resection      |  |  |  |
| Bott <i>et al</i> . (11)                                                                                                              | 2018                                                                                | 20 | 13 | 7 (54%) | 228 min | 10 (50%) | 0 (0%) | Most common complication was atrial<br>arrhythmia (30%) |  |  |  |
| Yang et al. (12) 2018 13 12 3 (23% NR 9 (69%) 0 (0%) 10 (77%) patients underwent lobectomy                                            |                                                                                     |    |    |         |         |          |        |                                                         |  |  |  |
| *, total patients                                                                                                                     | *, total patients resected. R0, complete resection; min: minutes; NR, not reported. |    |    |         |         |          |        |                                                         |  |  |  |

## Phase III trials

|                                    |         |      |                                            | ,                  |                    |                    |                                                |
|------------------------------------|---------|------|--------------------------------------------|--------------------|--------------------|--------------------|------------------------------------------------|
| Trial                              | Stage   | Size | Intervention<br>Used                       | ORR                | MPR                | pCR                | Survival                                       |
| CheckMate-159<br>(NCT02259621) [8] | IB-IIIA | 22   | Nivolumab                                  | 10%                | 45%                | 10%                | RFS at 18 months: 73%                          |
| LCMC3<br>(NCT02927301) [33]        | IB–IIIB | 181  | Atezolizumab                               | 7%                 | 20.4%              | 6.8%               | OS at 12 mo: 92% (stage<br>II) 95% (stage III) |
| NEOSTAR<br>(NCT03158129) [34]      | I–IIIA  | 37   | Nivolumab +<br>Ipilimumab vs.<br>Nivolumab | NI: 19%,<br>N: 19% | NI: 50%,<br>N: 24% | NI: 38%,<br>N: 10% | NR                                             |
| ChiCTR-OIC-17013726 [35]           | IA-IIIB | 40   | Sintilimab                                 | NR                 | 40.5%              | 16.2%              | NR                                             |

Table 3. Phase II clinical trials of neoadjuvant immunotherapy.

ORR, objective response rate; MPR, major pathological response; pCR, pathological complete response; OS, overall survival.

## Neoadjuvant immuno + chemotherapy

| Trial                                 | Stage                | Size     | Intervention Used                                                        | ORR            | MPR            | pCR          | Survival               |
|---------------------------------------|----------------------|----------|--------------------------------------------------------------------------|----------------|----------------|--------------|------------------------|
| NADIM<br>(NCT03081689)<br>[37]        | IIIA, N2             | 46       | Nivolumab +<br>Paclitaxel, carboplatin                                   | 78%            | 83%            | 71%          | OS at 24 months: 89.9% |
| TOP1201<br>(NCT01820754)<br>[45]      | IB-IIIA              | 24       | Ipilimumab (cycles 2–3 only)<br>Paclitaxel<br>Cisplatin (or carboplatin) | 58%            | NR             | 15%          | OS at 24 months: 73.0% |
| MAC<br>(NCT02716038)<br>[46]          | IB-IIIA              | 30       | Atezolizumab +<br>Nab-paclitaxel, carboplatin                            | 63%            | 57%            | 33%          | mDFS: 17.9 months      |
| CheckMate816<br>(NCT02998528)<br>[47] | IB-IIIA              | 350      | Chemotherapy + nivolumab vs.<br>chemotherapy                             | NR             | 36.9% vs. 8.9% | 24% vs. 2.2% | NR                     |
| Duan, H. [48]<br>Shen, D. [49]        | IIA-IIIB<br>IIB-IIIB | 23<br>37 | Chemotherapy + PD-1 inhibitor<br>Chemotherapy + pembrolizumab            | 73.9%<br>86.5% | 50%<br>64.9%   | 30%<br>45.9% | mPFS: 11.3%<br>NR      |
|                                       |                      |          |                                                                          |                | -              |              |                        |

Table 4. Phase II clinical trials of neoadjuvant immunochemotherapy.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

### Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

P.M. Forde, J. Spicer, S. Lu, M. Provencio, T. Mitsudomi, M.M. Awad, E. Felip,

Α

### Caution:

- Nivo+lpi arm discontinued
- Highly selected patients
- High volume surgeons
- Tertiary centres of expertise



| No. at Risk                 |     |     |     |     |     |     |             |    |    |    |    |    |    |   |   |
|-----------------------------|-----|-----|-----|-----|-----|-----|-------------|----|----|----|----|----|----|---|---|
| Nivolumab plus chemotherapy | 179 | 151 | 136 | 124 | 118 | 107 | 1 <b>02</b> | 87 | 74 | 41 | 34 | 13 | 6  | 3 | 0 |
| Chemotherapy alone          | 179 | 144 | 126 | 109 | 94  | 83  | 75          | 61 | 52 | 26 | 24 | 13 | 11 | 4 | C |

# Does administering neoadjuvant therapy impact pulmonary function?

## Neoadjuvant chemotherapy for NSCLC, lung function and surgical therapy – which is their connection?

Aleksandar Bokan, Evica Budisin, Marija Vukoja, Ana Golic, Ivan Kopitovic European Respiratory Journal 2019 54: PA772; DOI: 10.1183/13993003.congress-2019.PA772

## •PFTs pre and post NACT compared

•Matched pair cohort of 90 patients

•Significant reduction DLCoSB (74.6 to 70.6) and DLCo SB/VA (81.3 to 71.9) post NACT

•No difference in post operative complications or mortality

#### Changes in Pulmonary Function Tests After Neoadjuvant Therapy Predict Postoperative Complications

Robert J. Cerfolio, MD, FACS, Amar Talati, BS, and Ayesha S. Bryant, MSPH, MD Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama

- •N=132, 89% received NACT•Major complications-29.5%
- •Reduction in DLCoSB and DLCo SB/VA were the only factors predicting post op complication
- •A optimal cut off of 8% or greater reduction associated with higher morbidity

### Pulmonary rehabilitation during induction chemoradiotherapy for lung cancer improves pulmonary function

Shintaro Tarumi, MD, PhD, Hiroyasu Yokomise, MD, PhD, Masashi Gotoh, MD, PhD, Yoshitaka Kasai, MD, PhD, Natsumi Matsuura, MD, PhD, Sung Soo Chang, MD, PhD, and Tetsuhiko Go, MD, PhD

**Results:** All patients underwent a pulmonary rehabilitation program for an average of 10 weeks. Significant increases were observed in forced vital capacity (+6.4%, P = .0096) and forced expiratory volume in 1 second (+10.4%, P < .0001). Diffusing capacity of the lung for carbon monoxide decreased (-14.0%, P < .0001). Patients with respiratory impairment (forced vital capacity <80% predicted or forced expiratory volume in 1 second/forced vital capacity <70%) showed significant improvements in forced vital capacity (+13.9%, P = .0025) and forced expiratory volume in 1 second (+22.5%, P < .0001). Significant increases were observed in forced vital capacity (+7.0%, P = .0042) and forced expiratory volume in 1 second (+10.8%, P = .0001) in patients with a smoking history. There was no mortality, and postoperative respiratory morbidity was 6.1%.

Conclusions: A pulmonary rehabilitation program for patients with non-small cell lung cancer undergoing induction chemoradiotherapy seems to improve respiratory function. It is particularly recommended for smokers and patients with respiratory impairment. (J Thorac Cardiovasc Surg 2015;149:569-73)

## NACT in NSCLC-TMH experience

- 2013-2019
- Post NACT-119 (16.2%)
- Mean age: 56.13 years
- Male:Females 89:30
- Histology:
   Adenocarcinoma-84
   Squamous carcinoma-32
   Poorly diff carcinoma-3

| Indications for NACT: |
|-----------------------|
| ►N2 disease-98        |
| Downstaging-6         |
| Borderline fitness-   |
| 4                     |
| ➢Others-11            |

| Regimen           | Ν  |
|-------------------|----|
| Pemetrexed+ Cis   | 47 |
| Pemetrexed+Carbo  | 16 |
| Paclitaxel+carbo  | 17 |
| Paclitaxel+cis    | 5  |
| Gemcitabine+cis   | 12 |
| Gemcitabine+carbo | 8  |
| Cis+ Vinorelbine  | 5  |
| Cis+Vincristine   | 4  |
| Gefitinib         | 2  |
| Others            | 3  |

## TMH experience

Surgery

- Lobectomy- 92
- Bilobectomy-6
- Pneumonectomy-17 (14.2%)
- Inoperable-4

Approach

- Thoracotomy-73
- VATS-26
- VATS converted to open-7(26.9%)
- Robotic-10
- Robotic converted to open-3
  - Mean blood loss-502 ml
  - Mean operating time-190 min
  - Mean hospital stay-7.4 days
  - Major post post op complication(CD≥III)-16 (13.4%)
  - Mortality-4 (3.4%)

## Conclusions

Neoadjuvant therapy is at the threshold of becoming the standard of care
Multidisciplinary joint clinics have never been more essential

Contemporary series have demonstrated safety and acceptable adverse effects
Minimally invasive surgery, pneumonectomy and extended resections can be performed safely post neoadjuvant
Lung function needs to repeated pre and post neoadjuvant and might help predict post op complications

Neoadjuvant immunotherapy- No longer the new kid on the block, has promising early results, path CR yet to translate into OS benefit
Future therapy will be biomarker based

# Success is teamwork and together we can achieve so much more!

